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SUMMARY

A modified MAC method (SIMAC; semi-implicit marker and cell) is proposed which accurately treats unsteady
high-Reynolds free surface problems. SIMAC solves the Navier–Stokes equations in primitive variables on a
non-uniform staggered Cartesian grid by means of a finite difference scheme. The convective term is treated
explicitly by employing a second-order upwind scheme in space (HLPA) and the Adams–Bashforth technique in
time. The diffusive part is solved by means of the implicit approximate factorization technique. A multigrid
technique based on the additive correction strategy is employed to solve the Poisson equation for the pressure.
Finally, the free surface treatment is carried out using massless particles which divide the domain of integration
into full and empty cells as in a standard MAC method.

The algorithm is used for the analysis of large-amplitude water sloshing in retangular unbaffled and baffled
containers. Experimental tests have been carried out in order to validate the algorithm. Numerical results
satisfactorily agree with experimental data for the whole range of filing conditions analysed here.

KEY WORDS: viscous free surface flows; approximate factorization; multigrid technique; water sloshing; experimental
validation

1. INTRODUCTION

Most problems in ship hydrodynamics are characterized by unsteady flows in the presence of a free
surface and are affected by the water viscosity. Typical problems in this area are the large-amplitude
sloshing of liquids in baffled tanks and the hydrodynamic interaction between water waves and
oscillating free surface-piercing bodies.

Several techniques have already been developed to treat such problems. The MAC method of
Welch et al.1 represents the first attempt to simulate unsteady viscous flows with a free surface. It
solves the unsteady primitive variables Navier–Stokes equations on uniform Cartesian staggered
grids. The velocity field is predicted using an explicit second-order centred discretization of the
convective and diffusive terms.

The continuity equation, written as a Poisson equation for the pressure, is solved with a point-by-
point procedure and the Lagrangian movement of the free surface is identified by massless particles
(markers). The domain of integration of the governing equations is fixed in time, the liquid portion
being identified by the flagging of the cells depending on their own position compared with the
instantaneous position of the markers.

The method was then improved. At first efforts were devoted to a better calculation of the pressure
at the free surface,2–4 then to a more accurate tracking of the free surface itself.
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SUMMAC,2 SOLA-VOF5 and TUMMAC6–9 are typical examples of modified MAC methods.
However, these algorithms share common features:

(a) the subdivision of the computational domain in full, free surface and empty cells
(b) the solution of a Poisson equation for the pressure
(c) the explicit updating of the velocity field.

Mainly owing to the diffusive constraint on the time step, the explicit updating of the velocity field
does not allow the accurate solution of the viscous stress at the solid boundaries, even if non-uniform
grids are employed.

For the reasons previously outlined, in the past the MAC method was applied to the computation of
very viscous flows with interfaces or to problems in which the viscous stress can be neglected.
Basically, this is due to the fact that the nature of the algorithm requires the use of coarse grids.

Over the last few years a number of very promising techniques have been developed which solve
the governing equations in generalized co-ordinates within a time dependent domain of
integration.10,11 Despite the great accuracy of these methods, they require a large amount of CPU
time and their effectiveness in handling highly distorted free surface patterns has yet to be proved.

Recently the need has emerged to find a powerful technique which allows the solution of the liquid
sloshing problem in ship tanks. Indeed, in a recent paper,12 discrepancies between numerical results
and experimental data have been ascribed to the artificial dissipation due to grid coarseness. As a
conclusion the author points out the need for an accelerating technique which can contribute to the
accurate solution of the viscous stress at the solid boundaries and allows for the inclusion of a
turbulence model.

The present paper seeks to provide a contribution to the solution of the problem. The main idea is
based on a modification of the MAC method which updates the velocity field by means of the well
established semi-implicit technique. The viscous stress is solved implicitly by means of the
approximate factorization technique and the convective part is treated explicitly by using the Adams–
Bashforth time advancement technique. The semi-implicit treatment makes it possible to overcome
the constraint on the time steps related to the diffusive condition for the stability and at the same time
to use high-order wiggle-free schemes for the convective part. The resulting algorithm is formally
second order accurate in both space and time.

It is well known that in viscous unsteady computations a large CPU time is needed for the solution
of the pressure equation in order to achieve a free divergence velocity field at each time step. For this
reason it is crucial to accelerate the convergence of the pressure equation. In the present paper this

Figure 1. Frame of references used in computations and representation of body forces per unit volume acting throughout liquid

186 V. ARMENIO



objective has been achieved by using the additive correction multigrid technique, thanks to which the
algorithm was accelerated by a factor of seven to nine as compared with the solution obtained with an
SOR procedure.

The algorithm, called SIMAC (semi-implicit marker and cell), can handle very stretched grids and
allows for high-Reynolds-number computations.

2. GOVERNING EQUATIONS

In a frame of reference fixed to the body (Figure 1) the two-dimensional Navier–Stokes equations for
an incompressible flow written in primitive variables are:
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where u and v are the velocity components referred to the above-mentioned frame of reference,
P � �p ÿ patm�=r is the relative pressure,n is the kinematic viscosity andBx and By are the
components of the body forces acting throughout the liquid. The origin of the frame of reference is
located at the centre of the tank bottom.

In the present work SIMAC is applied to the solution of an internal flow problem (liquid sloshing
in rectangular containers). In this case the following set of conditions should be considered at the
boundaries of the domain.

Rigid walls

The normal and tangential components of the velocity are zero.

Free surface

Kinematic and dynamic boundary conditions have to be applied at the free surface. In particular the
following non-linear kinematic condition, able to deal with large-amplitude non-overturning waves,
should be used:
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whereZ�x; t� is the height of the free surface above the tank bottom.
Several dynamic conditions could be taken into account at the free surface depending on the degree

of accuracy required.
In particular the stress normal to the free surface must counterbalance the external applied forces

and the stress tangential to the free surface must disappear.
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If one neglects the surface tension related to the free surface local curvature, the above conditions
can be written as
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Owing to the difficulties encountered by the MAC method in accurately solving the boundary layer
at the free surface,8 in the present work equation (6) is neglected and equation (5) is simplified as

P � 0 on y � Z�x; t�: �7�

3. COMPUTATIONAL METHOD

The algorithm proposed in this work is basically a MAC method. It follows that the governing
equations are solved by means of a fractional step or time-splitting technique. In the first stage a
velocity field satisfying the momentum equations is calculated; in the second step this field is
corrected to a free divergence one by means of a scalar operatorF. This allows us to write the
continuity equation as a Poisson equation forF.

As already mentioned, the family of MAC methods treats the convective and diffusive terms
explicitly. The order of space discretization basically depends on the scheme used for the convective
term. If hybrid schemes are employed,6 the algorithm is first-order-accurate. If, instead, one uses
third-order upwinding9 or second-order centred schemes in conjunction with fourth-order artificial
dissipation, the algorithm is high-order.

The explicit treatment of the diffusive term involves a severe restriction of the time step available
for low-Reynolds-number flows and near the boundaries when stretched meshes are used. The latter
case makes the calculation unfeasible in hydrodynamics.

On the other hand a fully implicit scheme entails the inversion of a sparse matrix if high-order
schemes are employed for the discretization of the convective terms.

Thus a semi-implicit treatment can eliminate the restrictions related to the use of the explicit
differencing of the diffusive term and at the same time allows the use of high-order schemes for the
convective part. The latter is a particularly favourable circumstance when large Peclet numbers are
expected during the computation.

3.1. Fractional step formulation

Several formulations of semi-implicit, fractional step algorithms have been developed in the past.
In 1990 Gresho13 clarified the theoretical background that makes it possible to solve the Navier–
Stokes equations via a semi-implicit projection method. In his contribution he paid special attention
to the treatment of the intermediate boundary conditions.

Three semi-implicit formulations will be briefly described hereafter.
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Kim and Moin,14 after disregarding the pressure terms in the momentum equation, solved the set of
equations:

û ÿ un

Dt
� ÿ

1
2 �3 Conv�u�n ÿ Conv�u�nÿ1

� �
1
2nH

2
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whereF is a computational pressure projecting the velocity field in a free divergence field.
If one takes the divergence of (9) and considers that the updated velocity field must satisfy the

continuity equation, it follows that

H
2
F

n�1
�

1
Dt
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Kim and Moin have shown that the computational scheme is consistent provided that the following
condition is satisfied at the boundariesG:
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It should to be noticed that the physical pressure is given by the second-order approximation
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Later on Esposito15 proved that a consistent scheme can be achieved by explicitly introducing the
physical pressure in equation (8) and imposing the simplified boundary condition

ûG � un�1
G

; �13�

which makes it possible to use the homogeneous boundary condition@F=@n � 0 in equation (10).
In this scheme the physical pressure is related to the operatorF by the equation
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Finally Huser and Biringen16 showed that it is possible to use only the operatorF and at the same
time to apply equation (13), which results in the use of the homogeneous boundary conditions
@F=@n � 0.

In order to avoid the difficulties which can arise in a free surface problem when operating with two
different scalar functions,P andF respectively, the model by Huser and Biringen was used.

The two step advancement of the solution is performed as follows:
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If one takes the divergence of equation (16) and rearranges it, the result will be
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It has been shown16 that the use of homogeneous boundary conditions�@F=@n � 0� deriving from
the use of equation (13) provides for a consistent second-order scheme. Finally the pressureP is
given by the second-order approximation
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3.2. Convective terms

In this work several schemes were tested. In short it can be said that the second-order centred
scheme or the third-order unbounded upwind scheme (QUICK) needs the introduction of the fourth-
order artificial dissipative term. Nevertheless, great difficulties were encountered in choosing the
artificial viscosity coefficient conveniently. In the tests performed it was observed that the use of the
second-order bounded scheme (HLPA)17 ensures a wiggle-free solution without any significant loss
of accuracy even for large Peclet (Reynolds cell) numbers.

3.3. Diffusive terms

The diffusive terms are treated implicitly by means of the Crank–Nicolson scheme using the
approximate factorization technique.

Starting from equation (15), the intermediate velocity field is calculated in two different steps, each
of them involving one direction.

Equation (15) in vectorial notation can be rewritten as:
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The LHS of (19) is then manipulated as

1 ÿ A1 ÿ A2 � �1 ÿ A1��1 ÿ A2�; �20�

with the introduction of the extra termA1A2 proportional toDt2.
At each time step a two-stage algorithm is implemented as follows. First the following set of

equations is solved in thex-direction:
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Then at the second stage the following set of equations is solved in they-direction:

�1 ÿ A2�Du � Du�

: �22�

The boundary conditions for the intermediate increments are simplyDu* � 0.
Finally a special treatment is required for the cells beyond the free surface, with the aim of

preserving the diagonal dominance of the matrices to be inverted.
The matrices must be diagonally dominant with non-zero elements on the principal diagonal. In

order to achieve this objective, the velocity points beyond the free surface are considered to have
Du � 0; hence the coefficients of the matrices for the equations centred over these points are put
equal to zero, one and zero respectively.

The elements of the matrices must be calculated at each time iteration depending on the
instantaneous position of the free surface.
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3.4. Solution of the Poisson equation

It is well known that in the fractional step method the continuity equation is rewritten as a Poisson
equation. For free surface computations a mixed Neumann–Dirichlet problem must be solved withF

and its normal derivatives set equal to zero at the free surface and at the rigid walls respectively.
Usually MAC methods use a point-by-point solver (SOR) mostly because of the difficulties

encountered at the free surface. This represents a strong limitation. Indeed on uniform grids the point-
by-point solver cannot adequately smooth the low-frequency errors, which results in a large number
of iterations for convergence; moreover, on stretched grids this solver often does not converge. Line
iterative solvers can alleviate the problem, in particular for stretched grids.

Despite the fact that multigrid techniques represent a class of methods ensuring an excellent rate of
convergence, in the MAC methods they have never been employed owing to the difficulties arising at
the free surface during the shift from one grid level to the next.

In this paper the Poisson equation is solved using the additive correction multigrid (ACM)
technique.18

Let us consider the equation:
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with boundary conditions@Fn�1
=@n � 0 at the rigid walls andFn�1

� 0 at the free surface.
According to the notation of Reference 18, equation (23) can be rewritten as
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which becomes
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i; j � 0 if Fi�1 is in the k; l block of the coarser grid andaE
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otherwise. The ACM technique envisages the sum of equation (25) over the blocks of the coarser grid
and the solution of the resulting equations for a correctiond.

If one sums equation (25) over thek; l block of the coarser grid, the result will be
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where M is the number of cells of the fine grid within thek; l block of the coarser grid and
Di; j � ap
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If ~Fi; j is the updated value of the computational pressure during the iterative cycle, after the level

shift one can writeFi; j �
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manipulations the result will be
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The implementation of ACM is rather straightforward and does not require any manipulation of the
boundary conditions, the latter being included implicitly in the coefficients of the fine grid equations.
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In the present work the computational domain contains2P1
� 2P2 control volumes (P1 andP2 are

integer numbers) and the selection of the number of levels is made so as to ensure that the coarsest
grid contains two blocks at least in one direction. Afterwards a V-cycle is performed and two or three
SOR cycles are used at each grid level.

It was observed that, compared with an SOR procedure, the ACM technique applied to a free
surface computation reduces the solution time by a factor of seven to nine on a 64664 stretched
grid.

3.5. Free surface

The domain of integration of the governing equations is divided into two parts by markers which
identify the instantaneous position of the free surface.

The markers are located at each half-cell as shown inFigure 2and advance in time by means of
equation (4). This treatment results in an improvement in volume conservation, because
interpolations are no longer required for the flagging of the velocities and pressure points.

The velocities of the markers are calculated by bilinear interpolation between the neighbouring
values. An extrapolation of the velocities beyond the free surface must therefore be performed in
advance. This operation is done according to TUMMAC-V.8

As shown inFigure 3, six cases are considered for the extrapolation of one velocity component.
Figure 3 refers to thev-component, but the procedure is the same for theu-component as well.

The extrapolation is repeated twice owing to the large number of points involved in the HLPA
scheme.

The solution of the pressure equation is performed as previously described. For free surface cells
the conditionF � P � 0 at the free surface is enforced through the calculation of the distancet (see
Figure 4) between the pressure point where the equation has to be discretized and the free surface
itself. As an example, with reference to Figure 4 the Poisson equation centred ati; j will be
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Finally, equation (4) is applied to advance the markers and is solved by means of a forward in time
and upwind in space finite difference algorithm.

Figure 2. Position of markers on instantaneous free surface profile
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Figure 3. Extrapolation ofv-component of velocities outside liquid portion in computational domain: black box, velocity points
outside liquid portion; white box, velocity points within liquid portion. For the sake of simplicity the figure refers to a uniform

grid, though the generalization to stretched grids is straightforward
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With reference to Figure 2 it follows that
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beingu
�m�

andv
�m�

the x- andy-components of the velocity of the markers respectively.

4. NUMERICAL RESULTS

This section is divided into two main subsections. In the first one numerical tests on the algorithm are
discussed. The second subsection thoroughly analyses a case of practical interest in engineering.

4.1. Numerical Tests

First numerical tests were performed in order to evaluate the consistency of the algorithm. In
particular, grid sensitivity tests were carried out for several values of the kinematic viscosity and for
different kinds of external excitation. The effect of the time incrementDt on the accuracy of the
solution was then analysed for a given grid size and Reynolds number.

The following case was considered first: a rectangular (1 m breadth, 0�5 m height) tank is suddenly
accelerated along the horizontal direction and the liquid motion is recorded till a steady state
condition is reached. The steady state condition corresponds to a flat free surface profile inclined at an
angle equal totanÿ1

�Ax=g�, whereAx is the horizontal acceleration, which is kept constant during the
computation, andg is the gravitational acceleration. In this testAx is equal to 1 m s72 and the
components of the body forces areBx � ÿAx andBy � ÿg in equations (2) and (3) respectively. The
Reynolds number�Re � �b3g�1=2

=n, with b denoting the tank breadth) is chosen equal to 313. The
liquid depth is chosen equal to 0�21 m and three different uniform grids (16616, 32632, 64664)
are used. The maximum allowed time step is chosen equal to 0�005 s and the Courant number equal
to 0�5. The wave height at the left side wall and the percentage of volume variation during the
computation versus time are plotted inFigure 5and6 respectively. It can be observed (Figure 5) that

Figure 4. ‘Irregular stars’ (t) used for discretization of Poisson equation at free surface

194 V. ARMENIO



Figure 6. Percentage of mass variation versus time for simulations of Figure 5

Figure 5. Wave height at left side wall versus time using three different uniform meshes (constant horizontal acceleration
Ax � 1 m s72, n�0�01 m2 s71)
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upon increasing the number of grid points, the difference between the analytical and the numerical
solution is less than 0�27% in the case of the 64664 grid.

Moreover, the analysis of the transient wave motion indicates that the reduction of the grid spacing
leads to a more accurate prediction of the wave speed. As regards the computation on the 64664
grid, a travelling wave moving with a period close to the theoretical value—the difference being less
than 0�4%—is observed. If one looks at Figure 6, the increase in the number of points results in a
reduction of the volume variation during the computation.

The previous tank was then forced into a sinusoidal large-amplitude (sway amplitude� 0�1 m) off-
resonance (sway period 2�5 s) horizontal motion using the same Reynolds number as in the previous
computations and uniform 32632 and 64664 grids. In this case the components of the body forces
will be Bx � ÿ0�1�2p=2�5�2 sin��2p=2�5�t� andBy � ÿg.

Figure 7 shows that a periodic motion condition is reached and that, using two grids, there are no
appreciable differences in the wave height at the left side wall. The vertical component of the velocity
at they � 0�156 m location att � 25 s is plotted inFigure 8for the 32632 and 64664 grids. The
results are satisfactory in this case as well.

Then, in order to evaluate the effect of stretching on the accuracy of the solution, computations
were carried out for the 32632 and 64664 stretched grids usingRe � 939�4 (n� 0�0033 m2 s71).
The stretching was computed as follows:

x�i� � b
tanh ax i ÿ jx=2

ÿ �� �

tanh axjx =2
ÿ �� �

ÿ tanh ÿaxjx =2
ÿ �� �

 !

; �31�

y�i� � ly 1 �

tanh�ay�i ÿ jy��

tanh��ay j y��

 !

; �32�

Figure 7. Wave height at left side wall versus time using two different uniform meshes (sinusoidal sway motion, sway
amplitude 0�1 m, sway period 2�5 s, n�0�01 s2 s71
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Figure 8.v-Component of velocity aty�0�156 m location att� 25 s for simulations of Figure 7

Figure 9. Wave height at left side wall versus time using two different stretched grids (sinusoidal sway motion, sway amplitude
0�1 m, sway period 2�5 s, n� 0�0033 m2 s71)
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where ly is the height of the tank,jx and jy are the numbers of cells in thex- and y-direction
respectively andax and ay are coefficients which distribute the dimensions of the cells inside the
domain.

An increase inax anday reduces the grid size near the walls of the tank. In the cases that are being
considered, a compromise has to be reached between the location of a large number of points near the
walls, necessary for a good evaluation of the boundary layer characteristics, and the grid fineness in
the middle of the tank, necessary to avoid an excessive smoothing of the free surface waves, which
may occur when large stretching is employed.

Figure 9 shows the wave height at the left side wall for the two above-mentioned grids. The results
are once again satisfactory. Finally the velocity vector fields computed att � 2�5 s on both the
32632 and 64664 grids are shown inFigure 10.

As already mentioned, a second-order discretization in both time and space was employed for the
solution of the governing equations, nevertheless the present treatment of the free surface can reduce
the order of accuracy of the algorithm. Thus, in order to evaluate the effect of the time step on the

Figure 10. Computed velocity field att� 2�5 s (sinusoidal sway motion, sway amplitude 0�1 m, sway period 2�5 s,
n�0�0033 m2 s71): (a) 32632 stretched grid; (b) 64664 stretched grid
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accuracy of the solution, several computations were carried out using a 64664 stretched grid,Re �

1565�7 (n� 0�002 m2 s71) and the following values of the time increment:Dt � 0�001; 0�002; 0�004
and0�008 s. The same tank and periodic sway excitation as in the previous test were used.

Figures 11(a)–11(e) show the time evolution of the wave height at two locations�x � ÿ0�5 and
ÿ0�25 m), the components of the velocity field atx � 0; y � 0�0398 and the pressure computed at
x � 0; y � 0�0398 m.

The distribution of the vertical component of velocity in they � 0�0398 m section att � 6 s is
plotted in Figure 12. Appreciable differences appear forDt � 0�008 s. In particular, in this case a
weak smoothing of the velocities (Figure 12) and of the pressure (Figure 11(e)) is observed. If one
looks at the time evolution of the liquid height at the left wall (Figure 11(a)), a numerical noise
appears forDt � 0�008 s even if the characteristics of the transient wave motion, i.e. the overlapping
of short travelling waves on the standing wave, are well predicted. The analysis of the results showed
that the algorithm is first-order-accurate in time.

As previously outlined, the main feature of the improved MAC method proposed herein is the
accurate evaluation of the viscous stress at the solid boundaries in free surface computations. As an
example, a computation in a case of high-filling conditions (liquid depth=tank breadth ratioZ=b � 0�3)
for a large-amplitude free surface motion shows very interesting boundary layer patterns. In this case
the tank is subjected to roll motion through the origin of the frame of reference, so that the body
forces read (see also Figure 1):

Bx � ÿg sin�Y�t�� � �Y�t�ry �
_Y�t�2rx � 2v _Y�t�; �33�

Bx � ÿg cos�Y�t�� � �Y�t�rx �
_Y�t�2ry ÿ 2u _Y�t�; �34�

whererx andry are the components of the vectorr along thex- andy-axis respectively and_Y�t�;Y�t�
and �Y�t� are the roll angle, velocity and acceleration respectively.

Figure 11(a). Time domain evolution of wave height at left side wall using four different time steps (64664 stretched grid,
n� 0�002 m2 s,71 sway amplitude 0�1 m, sway period 2�5 s)
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Figure 11(c). Time domain evolution ofu-component of velocity atx�0, y� 0�0398 m using four different time steps
(64664 stretched grid,n� 0�002 m2 s,71 sway amplitude 0�1 m, sway period 2�5 s)

Figure 11(b). Time domain evolution of wave height atx�0�25 m location using four different time steps (64664 stretched
grid, n� 0�002 m2 s,71 sway amplitude 0�1 m, sway period 2�5 s)
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Figure 11(e). Time domain evolution of relative pressure atx�0, y� 0�0398 m using four different time steps (64664
stretched grid,n�0�002 m2 s,71 sway amplitude 0�1 m, sway period 2�5 s)

Figure 11(d). Time domain evolution ofv-component of velocity atx�0, y�0�0398 m wall using four different time steps
(64664 stretched grid,n� 0�002 m2 s,71 sway amplitude 0�1 m, sway period 2�5 s)

SIMAC METHOD FOR FREE SURFACE FLOWS 201



The motion is sinusoidal with maximum amplitude equal to 2� and period equal to 1�76 s, so that
Y�t� � �2p=180� sin��2p=1�76�t�. The computations were carried out on a 1286128 stretched grid
(Figure 13), with two different liquids as inTable I.

Owing to the small values of viscosity employed, the computations were stopped att � 5:28 s,
which corresponds to three periods of excitation, in order to reach a fully developed laminar flow
condition. Figure 14ashows theu-component of velocity recorded at thex � 0 location near the

Figure 13. 1286128 stretched grid employed for evaluation of boundary layer characteristics using two different values of
kinematic viscosity

Figure 12.v-component of velocity aty=0�0398 m location att� 6 s using four different time steps (grid, viscosity and
characteristics of sinusoidal sway motin are same as in Figure 11)
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Figure 14. Distribution att�5�28 s of (a)u-component of velocity at locationx� 0 near bottom of tank and (b)v-component
of velocity at locationy�0�1 m nearby left side wall of tank (Z=b�0�3, sinusoidal roll motion aroundx�0, y� 0, roll period

1�76 s, roll amplitude 2�)

Table I. Liquids used in computations and their kinematic viscosities

Liquid Kinematic viscosity (10�6 m2 s71)

Glycerol=water 63% 11�5
Water 1�0
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bottom of the tank. It can be noticed that the velocity profile is rather different from that which could
be obtained in the case of steady state calculations. The thickness of the boundary layer decreases
significantly with increasing Reynolds number. Thev-component of velocity recorded 0�10 m above
the bottom near the left side wall (Figure 14(b)) shows a typical feature of streaming layer
phenomena19 which results in the inversion of the velocity profile within the boundary layer. The
phenomenon is clearly shown inFigure 15.

4.2. Numerical and experimental analysis of water sloshing in a rectangular tank in roll motion

Liquid sloshing in containers has represented an important problem in transportation engineering
since the 1960s. The sloshing induced overturning moment can affect ship stability when large
amounts of liquid cargoes are shipped on board. On the other hand the induced dynamic impulsive
pressures often cause structural damage in the bulkheads of the tanks. The numerical simulation of
such a phenomenon requires an algorithm that can simulate highly distorted free surface waves,
including the splashes against the vertical walls of the flooded tank. As widely shown in the past,
MAC-type methods are effective in simulating such a complex phenomenon. Unfortunately, since
they cannot accurately solve the viscous stress at the solid boundaries, practical computations often
refer to the solution of the Euler equations20 (free slip condition at the solid boundaries), sometimes
leaving the role of stabilizing the numerical solution21 to the diffusive terms. These procedures turns
out to be inaccurate, especially when the tanks are equipped with internal baffles so that the velocity
field is strongly affected by viscosity. The need for an accurate simulation of liquid sloshing has been
outlined in recent works. In particular it has been clearly maintained12 that improvements are needed
to accelerate the computations so that a turbulence model for an accurate simulation of high Reynolds
flows can also be included.

Figure 15. Sketch of velocity field showing streaming layer phenomenon for simulation of Figure 14 (low viscosity case,
n� 161076 m2 s71)
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As previously stated, the underlying idea of the improved MAC method proposed in this paper is to
overcome the above-mentioned limitations while maintaining the advantages offered by the MAC
methods in treating distorted free surface patterns.

In the second stage of the work the physical analysis of water sloshing in rectangular containers
was carried out. A turbulence model was included in the algorithm in order to simulate high-
Reynolds flows.

The choice of a suitable turbulence model is a difficult task. The physical problem is unsteady, the
mean velocity is zero and there is no dominant flow direction. For these reasons the algebraic
Baldwin–Lomax model, widely applied in ship hydrodynamics, cannot be used. On the other hand, in
the opinion of the author, the implementation of ak e model is too difficult for several reasons. First,
it is not clear how the kinetic turbulent energy and the dissipatione at the liquid–solid interface and at
the free surface should be treated. Moreover the implementation of such a model presupposes the
knowledge of too many empirical constants which have to be adjusted to the physical problem under
consideration.

For these reasons it was decided to apply an algebraic SGS turbulence model as modified by
Miyata et al.9 into a two dimensional form. Obviously these considerations are not exhaustive and a
lot of effort should be devoted to the search for an accurate turbulence model for such simulations.
Nevertheless, to the knowledge of the author, no attempts have been made so far to simulate large
amplitude water sloshing with an algorithm that includes a turbulence model.

The study was performed for three filling conditions, including both the shallow water and the high
depth cases in the whole range of frequencies of practical interest. In the high depth case a baffled
configuration was also analysed.

In order to validate the numerical results, experimental tests were carried out at the Hydrodynamic
Laboratories of the Department of Hydraulics of the University of Rome.

A rectangular 0�5060�56 0�25 m3 tank made of Plexiglass was used (Figure 16). The tank was
placed on a massive support anchored to the floor and connected to an AC motor (140 W) by means

Figure 16. Schematic representation of experimental set-up
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of a four-bar linkage. The motor transmits roll motion by means of an axis located 0�048 m below the
bottom of the tank. The maximum allowable frequency of the motor is 6�78 rad=s71.

The tank motion is two dimensional and, with the exception of some special cases, the liquid
motion inside the tank was observed to be two-dimensional as well.

A wave height recorder composed of an ultrasonic sensor (Honeywell S9432-AUDS) placed
0�70 m above the bottom of the tank and 0.10 m from the right side wall was used.

Finally the wave patterns were recorded by means of a digital video-recorder located 1�5 m away
from the tank. The records were then digitized in order to derive the free surface profiles for the cases
of interest.

The filling ratios investigated (Z=b � 0�005; 0�15; 0�2) are indicative of three different situations: a
first one in which resonant hydraulic jumps are recorded; a second one with large travelling waves
impacting against the vertical walls; and a third one characterized by the presence of large-amplitude
standing waves.

First free oscillation tests were carried out numerically. Such computations are indicative of the
ability of the algorithm to predict the wave speed correctly. As initial conditions the fluid is at rest,
the pressure distribution hydrostatic and the free surface profile inclined at an angle of 5�. In these
tests the filling ratioZ=b � 0�1 was also investigated. The time evolution of the liquid height at the
left side wall was recorded and afterwards the natural period of oscillation was calculated as the
difference between the time instants at which the liquid height at the left side wall reaches the
maximum value. These periods were measured for several cycles of oscillation and the mean value
was calculated.Figure 17shows the computed natural period versusZ=b together with the values
derived from the linear theory. It can be observed that the numerical results well agree with the
analytical ones in the whole range of liquid depths investigated. According to physical
observations,22,23 the analysis of the decay curves shows that forZ=b up to 0�1 the liquid motion
is strongly damped after the first oscillation, basically because of the generation of a hydraulic jump

Figure 17. Analytical (linear potential theory) and computed non-dimensional natural period versus filling ratio (Z=b) inside
tank
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which impacts against the tank walls thereby dissipating energy. On the other hand the increase in the
liquid depth inside the tank makes the wave mode shift from a hydraulic jump to a travelling wave
(Z=b � 0�15) until it reaches a standing wave in the case ofZ=b � 0�2. In the last two cases the free
surface motion turns out to be less damped than in the case of shallow water.

Later on numerical computations were performed with the tank located atd � 0�048 m above the
centre of oscillation as in the experiments. Thus the body forces will be

Bx � ÿg sin�Y�t�� � �Y�t��ry � d� � _Y�t�2rx � 2v _Y�t�; �35�

By � ÿg cos�Y�t�� � �Y�t��rx� �
_Y�t�2�ry � d� ÿ 2u _Y�t�: �36�

Two maximum roll amplitudes were investigated, 0�9� and 1�7�. The choice of small amplitude roll
motion was made in order to avoid water outflow from the tank during the experiments. Nevertheless,
owing to the fact that the tank bottom is located above the rolling centre, large travelling waves or
hydraulic jumps were observed in both the computations and the experiments. In order to compare
numerical and experimental results, the same law of motion as in the experiments was included in the
computer code. However the experimental device provides a sinusoidal roll motion, velocity and
acceleration for roll amplitudes within 3�.

As regards the caseZ=b � 0�05, the numerical and experimental non-dimensional wave heights
�Zmax ÿ Zmin�=b versus the roll frequency (hereafter referred to asO) are plotted inFigure 18. It has to
be pointed out that a steady state oscillation is rarely obtained. Hence the non-dimensional wave
heights presented hereafter are always considered to be mean values over an adequately long time
interval.

Numerical results and experimental data show that even if the first natural frequency predicted by
the linear theory is equal to 3�1 rad s71 the resonance zone enlarges with increasing roll amplitude.
The behaviour of the numerical solution atO� 3�98 rad s71 for a roll amplitude equal to 0�9�

Figure 18. Numerical and experimental non-dimensional wave height at locatinx�0�15 m versus roll frequency for two roll
amplitudes (Z=b � 0�05)
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confirms the experimental results which show the non-linear features of the physical system.24 In
particular, atO� 3�98 rad s71 two stable wave modes can be excited (Figure 19), a hydraulic jump
and a standing wave, and it is possible to shift from the first mode to the second one by introducing a
small perturbation in the system. In both the experiment and the computation the perturbation was
introduced by continuously varying the roll frequency from 4 to 3�98 rad s71 after a steady state
oscillation was reached. As in the previous case the same phenomenon was observed at
O� 4�28 rad s71 for the roll amplitude equal to 1�7�.

The tests were also carried out in the range of high frequencies in order to analyse the liquid
motion in the zone of the second resonant frequency (O� 6�12 rad s71). At this value only a smooth
resonance peak appears.

The numerical and experimental resonant wave patterns at four time instants are presented in
Figure 20, which clearly shows the agreement between the free surface profiles predicted by the
computations and those observed in the experiments.

As previously highlighted, the main effect of an increase in the liquid depth inside the tank
(Z=b � 0�15) lies in the variation of the resonant wave mode from a hydraulic jump to a large
travelling wave (Figure 21). The resonance zone is narrower compared with the previous case and
jumps of wave amplitudes in the frequency domain are no longer observed (Figure 22). For this
filling ratio the analysis for a roll amplitude equal to 1�7� was restricted to an off-resonance low
frequency zone, mainly owing to large water outflow in the case of resonant motion.

Finally, the filling ratio 0�2 was investigated. In this condition a baffle (0�05 height, 0�04 breadth)
configuration was also studied. The baffle was located in the centre of the tank as shown inFigure 23.

The liquid motion is strongly affected by the geometrical characteristics of the tank. When the
unbaffled tank is analysed, the liquid response is similar to that of a slightly damped non linear
oscillator. Indeed the small amplitude off-resonance standing waves suddenly change into large

Figure 19. Numerical and experimental time records of wave height atx�0�15 m, forZ=b � 0�05;O � 3�98 rad s71 and roll
amplitude 0�9�. The presence of two different wave modes (standing wave and hydraulic jump) is shown

208 V. ARMENIO



amplitude waves in a narrow range of frequencies neighbouring the resonant one. The numerical and
experimental non-dimensional wave heights at the position of the wave recorder are reported in
Figure 24. In this case too the computational results agree fairly well with the experiments. In order to
avoid water outflow, the experiments were carried out for the roll amplitude equal to 0�9� in a range
of forcing frequencies varying between 3�7 and 5�75 rad s71.

Figure 21. Computed and recorded wave profiles in resonance conditions (o� 5�56 rad s71, F�0�9�, Z=b� 0�05) at four time
instants (from top left)t1� 4�25 s,t2� 4�55 s,t3�4�85 s andt4� 5�15 s

Figure 20. Computed and recorded resonant wave profiles (o� 3�47 rad s71, F�0�9�, Z=b� 0�05) at four time instants (from
top left) t1�4�63 s,t2�4�93 s,t3� 5�23 s andt4�5�53 s
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Figure 23. 128664 stretched grid used in computations for baffled geometry

Figure 22. Numerical and experimental non-dimensional wave height at locationx�0�15 m versus roll frequency for two roll
amplitudes (Z=b � 0�15)
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The analysis of the baffled configuration shows very interesting features. The presence of the
vertical obstacle causes the generation of large recirculations and a jump-like effect above the
obstacle itself (Figure 25). The response in the frequency domain (Figure 24) shows a shift of the
resonance frequency fromO � 5�76 to 5�2 rad s71 and a marked reduction of the resonant wave
amplitude. According to previous investigations,25 this effect can be easily explained by the fact that
the vertical obstacle inhibits the generation of large amplitude standing waves which turn into small
hydraulic jumps owing to shallow water effects over the obstacle.

5. CONCLUDING REMARKS

An improved MAC method for the accurate solution of free surface viscous flows has been proposed.
The free surface is treated as in a standard MAC method and the fractional step approximate
factorization technique for the solution of the Navier–Stokes equations is applied. A multigrid
technique based on the additive correction strategy is used in order to speed up the convergence of the
pressure equation. As compared with standard methods, the main advantage of the improved MAC
method proposed herein lies in the accurate solution of the viscous stress at the solid boundaries. At
the same time this method retains the ability of MAC methods to treat distorted free surface patterns
such as splashes over rigid walls. Moreover, the use of a multigrid technique for the solution of the
pressure equation allows us to solve high-Reynolds flows on an adequately fine stretched grid. As
highlighted by several authors, such computations are impracticable if standard MAC methods are
applied.

In the first stage of the work grid sensitivity tests were carried out. It was observed that the
algorithm can accurately solve the viscous stress at the solid boundaries. In particular streaming layer
phenomena were shown in the evolution of the unsteady viscous flow.

Figure 24. Numerical and experimental non-dimensional wave height at locationx�0�15 m versus roll frequency for roll
amplitude 0�9� andZ=b � 0�2 (baffled and unbaffled geometries)
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The method was then employed for the analysis of water sloshing in rectangular containers. A two
dimensional form of the SGS turbulence model was included in the algorithm. In order to validate the
numerical results, experimental tests were carried out using a 0�50 m breadth tank partially filled with
water.

Computations and experiments were performed for three different filling ratios ranging from
shallow water to high depths. The physical features of the phenomenon were accurately predicted by
means of the numerical model. In particular, in the shallow water cases, resonant hydraulic jumps
appear in a wide range of exciting frequencies and the presence of two different wave modes was
experienced in the limiting frequency between the resonance and off-resonance zones.

An increase in the liquid depth inside the tank produces a change in the resonant wave mode from a
hydraulic jump to a large travelling wave up to a standing wave. Moreover the increase in the liquid
depth causes the resonance zone to be narrowed, since the physical system takes up the characteristics
of a slightly damped oscillator system.

In all the cases examined the numerical results agree well with the experiments, both in the
prediction of the wave heights and in the description of the wave modes.

Finally, in order to show the effectiveness of the algorithm in simulating free surface high
Reynolds flows for a geometry with internal obstacles, computations were also carried out for a
rectangular baffled tank.
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